{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Fit geometric element\n\nFit geomtric elements to pointClouds.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\nimport math as mathe\nfrom itom import pointCloud\nfrom itom import dataObject\nfrom itom import algorithms\nfrom itom import plot\n\ngeometryList = [\n \"circle2D\",\n \"circle3D\",\n \"sphere\",\n \"cylinder\",\n \"line\",\n \"plane\",\n]\ncloud = pointCloud()\n\nfor fitGeometry in geometryList:\n if fitGeometry == \"line\":\n\n X = np.arange(-3.1, 3.1, 0.1) * 3\n Y = np.arange(-3.1, 3.1, 0.1) * 3\n Z = np.ones(X.shape, X.dtype)\n cloud = pointCloud.fromXYZ(\n dataObject(X.astype(\"float32\")),\n dataObject(Y.astype(\"float32\")),\n dataObject(Z.astype(\"float32\")),\n )\n # pclNorm = pointCloud()\n # filter(\"pclEstimateNormals\", cloud, pclNorm)\n # [cPt, cAxis, cInl] = filter(\"pclFitLine\", pclNorm, optimizeParameters=0)\n\n [cPt, cAxis, cInl] = algorithms.pclFitLine(cloud, optimizeParameters=0)\n print(\n \"The line is at ({}, {}, {}) with the direction ({}, {}, {})\".format(\n cPt[0], cPt[1], cPt[2], cAxis[0], cAxis[1], cAxis[2]\n )\n )\n\n elif fitGeometry == \"plane\":\n\n [X, Y] = np.meshgrid(np.arange(-2.0, 2.0, 0.1), np.arange(-2.0, 2.0, 0.1))\n Z = np.ones(X.shape, X.dtype) + Y * np.sin(45 * np.pi / 180)\n Y *= np.cos(45 * np.pi / 180)\n cloud = pointCloud.fromXYZ(\n dataObject(X.astype(\"float32\")),\n dataObject(Y.astype(\"float32\")),\n dataObject(Z.astype(\"float32\")),\n )\n\n [cVec, cPt, cInl] = algorithms.pclFitPlane(cloud, 1, optimizeParameters=0)\n\n print(\"The plane's direction is ({}, {}, {}) with the constant {}\".format(cVec[0], cVec[1], cVec[2], cPt))\n\n elif fitGeometry == \"circle2D\":\n\n X = np.cos(np.arange(-3.1, 3.1, 0.1)) * 3\n Y = np.sin(np.arange(-3.1, 3.1, 0.1)) * 3\n Z = np.ones(X.shape, X.dtype)\n cloud = pointCloud.fromXYZ(\n dataObject(X.astype(\"float32\")),\n dataObject(Y.astype(\"float32\")),\n dataObject(Z.astype(\"float32\")),\n )\n\n [cPt, cRad, cInl] = algorithms.pclFitCircle2D(cloud, [1, 6], optimizeParameters=0)\n\n print(\"The circle has a radius {} and is centered at ({}, {})\".format(cRad, cPt[0], cPt[1]))\n\n elif fitGeometry == \"circle3D\":\n\n X = np.cos(np.arange(-3.1, 3.1, 0.1)) * 3\n Y = np.sin(np.arange(-3.1, 3.1, 0.1)) * 3\n Z = np.ones(X.shape, X.dtype) + Y * np.sin(45 * np.pi / 180)\n Y *= np.cos(45 * np.pi / 180)\n cloud = pointCloud.fromXYZ(\n dataObject(X.astype(\"float32\")),\n dataObject(Y.astype(\"float32\")),\n dataObject(Z.astype(\"float32\")),\n )\n\n [cPt, cNormal, cRad, cInl] = algorithms.pclFitCircle3D(cloud, [1, 6], optimizeParameters=0)\n\n angle = (\n mathe.acos(cNormal[2] / (cNormal[0] * cNormal[0] + cNormal[1] * cNormal[1] + cNormal[2] * cNormal[2]))\n * 180\n / np.pi\n )\n\n angle = np.mod(angle, 90)\n\n print(\n \"The circle has a radius {} and a angle of {} and is centered at ({}, {}, {})\".format(\n cRad, angle, cPt[0], cPt[1], cPt[2]\n )\n )\n\n elif fitGeometry == \"sphere\":\n\n [X, Y] = np.meshgrid(np.arange(-2.0, 2.0, 0.1), np.arange(-2.0, 2.0, 0.1))\n Z = np.sqrt(9 - Y * Y - X * X)\n cloud = pointCloud.fromXYZ(\n dataObject(X.astype(\"float32\")),\n dataObject(Y.astype(\"float32\")),\n dataObject(Z.astype(\"float32\")),\n )\n\n [cPt, cRad, cInl] = algorithms.pclFitSphere(cloud, [1, 6], optimizeParameters=0)\n print(\"The sphere has a radius {} and is centered at ({}, {}, {})\".format(cRad, cPt[0], cPt[1], cPt[2]))\n elif fitGeometry == \"cylinder\":\n\n [X, Y] = np.meshgrid(np.arange(-2.0, 2.0, 0.1), np.arange(-2.0, 2.0, 0.1))\n Z = np.sqrt(9 - Y * Y)\n cloud = pointCloud.fromXYZ(\n dataObject(X.astype(\"float32\")),\n dataObject(Y.astype(\"float32\")),\n dataObject(Z.astype(\"float32\")),\n )\n\n # For cylinder fits we need normals defined\n pclNorm = pointCloud()\n algorithms.pclEstimateNormals(cloud, pclNorm)\n\n [cPt, cAxis, cRad, cInl] = algorithms.pclFitCylinder(pclNorm, [1, 6], optimizeParameters=0)\n print(\n \"The cylinder has a radius {} and its axis is at ({}, {}, {}) with the direction ({}, {}, {})\".format(\n cRad, cPt[0], cPt[1], cPt[2], cAxis[0], cAxis[1], cAxis[2]\n )\n )\n elif fitGeometry == \"cone\":\n # Not defined yet\n [X, Y] = np.meshgrid(np.arange(-2.0, 2.0, 0.1), np.arange(-2.0, 2.0, 0.1))\n Z = np.sqrt(Y * Y + X * X)\n cloud = pointCloud.fromXYZ(\n dataObject(X.astype(\"float32\")),\n dataObject(Y.astype(\"float32\")),\n dataObject(Z.astype(\"float32\")),\n )\n\n plot(cloud)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 0 }